

Working Group 4: Linking MI & Gas Datasets

AGU Fall Meeting | New Orleans, LA | November 14, 2025

Behnaz Hosseini

Shishaldin Volcano | PC: USGS_AVO, Cyrus Read

Meet the Team!

**Saisha
Brody**

University of Texas
at Austin

**Claudia
Cannatelli**

University of Alaska
Anchorage

**Annabelle
Carozza**

University of
Oregon

**Echo
Ding**

University of
Florida

**Nathan
Graham**

University of Alaska
Fairbanks

**Rick
Hervig**

Arizona State
University

**Michael
Hudak**

Williams
College

**Ellyn
Huggins**

Cornell
University

**Pavel
Izbekov**

University of Alaska
Fairbanks + AVO

**Emily
Johnson**

USGS - Cascades
Volcano Observatory

**Peter
Kelly**

USGS - Cascades
Volcano Observatory

**Skye
Kushner**

University of Alaska
Anchorage

**Jess
Larsen**

University of Alaska
Fairbanks + AVO

**Daniel
Lee**

LDEO - Columbia
University

**Allan
Lerner**

USGS - Cascades
Volcano Observatory

**Matthew
Loewen**

USGS - Alaska
Volcano Observatory

**Taryn
Lopez**

University of Alaska
Fairbanks + AVO

**Madison
Myers**

Montana State
University

**Terry
Plank**

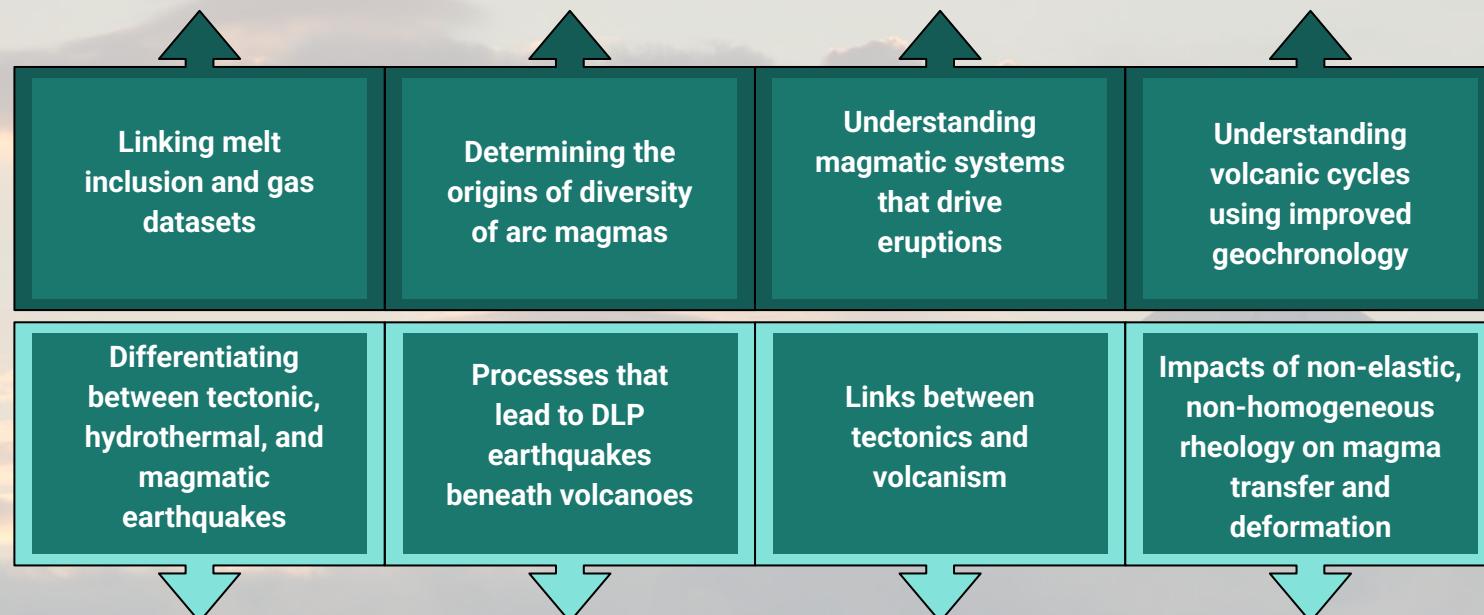
LDEO - Columbia
University

**Felipe
Rojas Vilches**

University of
New Mexico

**Paul
Wallace**

University of
Oregon


**Penny
Wieser**

University of
California, Berkeley

AVO-Identified Science Priorities

Advancing our Understanding of Volcanic Cycles and Plumbing Systems

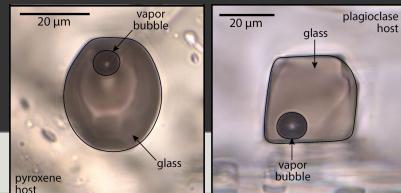
Analyzing Real-Time Datasets For Improved Interpretation of Active Systems

Broad Working Group Objectives

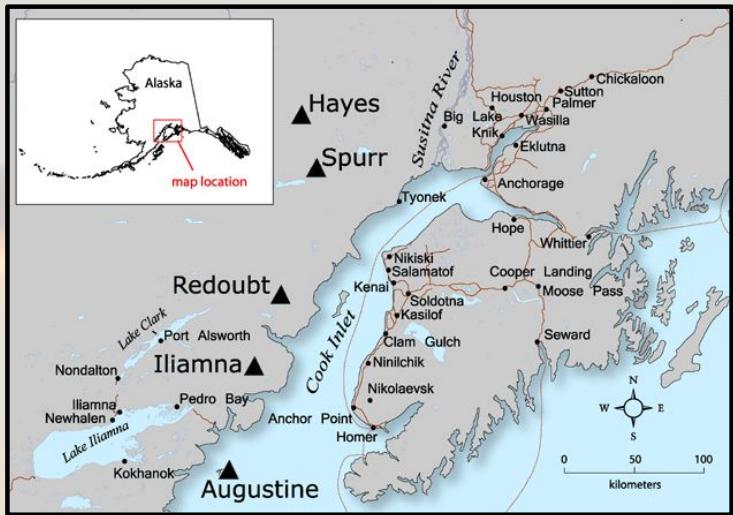
May Working Group Discussion Topics

Data gaps in the volatile record (MI, gas) for volcanoes in the Alaska-Aleutian Arc

Which volcanoes have both MI and gas **data ready for integration**? Which volcanoes have good gas data but need MI data, and vice versa?


What can we do **now** as a community, sans additional funding? Where should we focus our efforts?

Research priorities that require **funding**


First Task: Data Compilation of MIs and Gas

Categories Emerging from Data Compilation:

	MI Data?	Reconstructed CO ₂ ?	Gas Data?	Example(s)	Next Step
Group 1	✓	✓	✓	Okmok 2008 Veniaminof 2018	Time to model! Explore potential forward model degassing pathways based on different scenarios (e.g., shallow degassing, recharge).
Group 2	✓	✗	✓	Augustine 2006 Pavlof 2016 (IP; Plank & Lee) Spurr 1992	Reconstruct CO ₂ from MIs
Group 3	✗	✗	✓	Shishaldin 2023 Cook Inlets!	Analyze MIs
Group 4	✓	✓ or ✗	✗	???	Deploy multi-GAS during unrest
Group 5	✗	✗	✗	Douglass (some gas, no holocene eruptions)	Analyze MIs from any available material, and deploy multi-GAS during unrest?

Working Group Findings

FC: J. Schaefer / AVO ADGGS

- Cook Inlet volcanoes don't have much published MI data but...
- ...all Cook Inlet volcanoes ranked as high to very high threat and...

high threat very high threat

Rank	Volcano	State	Aviation threat score	Overall threat score	Latitude (in decimal degrees)	Longitude (in decimal degrees)
1	Kilauea	HI	48	263	19.425	-155.292
2	Mount St. Helens	WA	59	235	46.2	-122.18
3	Mount Rainier	WA	37	203	46.87	-121.758
→ 4	Redoubt Volcano	AK	48	201	60.485	-152.742
5	Mount Shasta	CA	39	178	41.42	-122.2
6	Mount Hood	OR	30	178	45.374	-121.694
7	Three Sisters	OR	30	165	44.133	-121.767
8	Akutan Island	AK	47	161	54.134	-165.986
9	Makushin Volcano	AK	47	161	53.891	-166.923
→ 10	Mount Spur	AK	48	160	61.299	-152.251
11	Lassen volcanic center	CA	32	153	40.492	-121.508
→ 12	Augustine Volcano	AK	48	151	59.363	-153.43
13	Newberry Volcano	OR	30	146	43.722	-121.229
14	Mount Baker	WA	15	139	48.777	-121.813
15	Glacier Peak	WA	37	135	48.112	-121.113
16	Mauna Loa	HI	4	131	19.475	-155.608
17	Crater Lake	OR	37	129	42.93	-122.12
18	Long Valley Caldera	CA	29	129	37.7	-118.87
19	Mount Okmok	AK	47	117	53.43	-168.13
→ 20	Iliamna Volcano	AK	34	115	60.032	-153.09
21	Yellowstone caldera	WY	27	115	44.43	-110.67
22	Aniakchak Crater	AK	41	112	56.88	-158.17
23	Hualalai	HI	27	109	19.692	-155.87
24	Mono-Inyo Craters	CA	29	106	37.88	-119
25	Mount Martin	AK	23	106	58.172	-155.361
26	Mount Mageik	AK	23	106	58.195	-155.253
27	Trident Volcano	AK	29	106	58.236	-155.1
28	Mount Katmai	AK	35	106	58.28	-154.963
29	Mount Veniaminof	AK	47	102	56.17	-159.38
30	Atka volcanic complex	AK	35	102	52.381	-174.154
31	Korovin Volcano	AK	35	102	52.381	-174.166
32	Shishaldin Volcano	AK	41	93	54.756	-163.97
33	Clear Lake volcanic field	CA	15	92	38.97	-122.77
34	Mount Adams	WA	15	92	46.206	-121.49
→ 35	Hayes Volcano	AK	34	90	61.64	-152.411

Working Group Findings

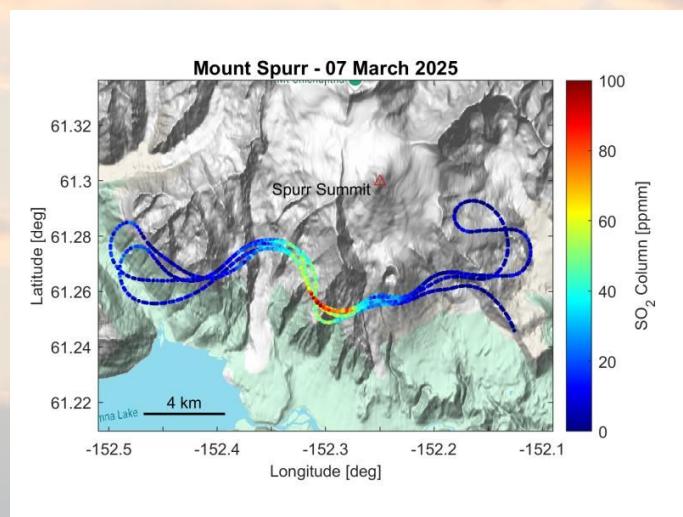
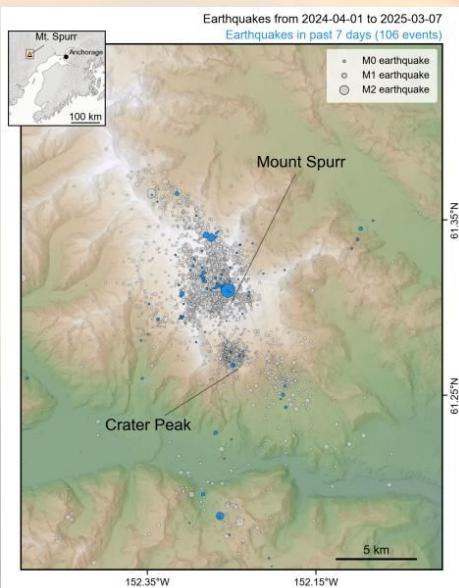
PC: S. Kushner / UAA

- Cook Inlet volcanoes don't have much published MI data but...
- ...all Cook Inlet volcanoes ranked as high to very high threat and...
- ...these volcanoes are great targets because they have great gas data: annual flights, multi-GAS

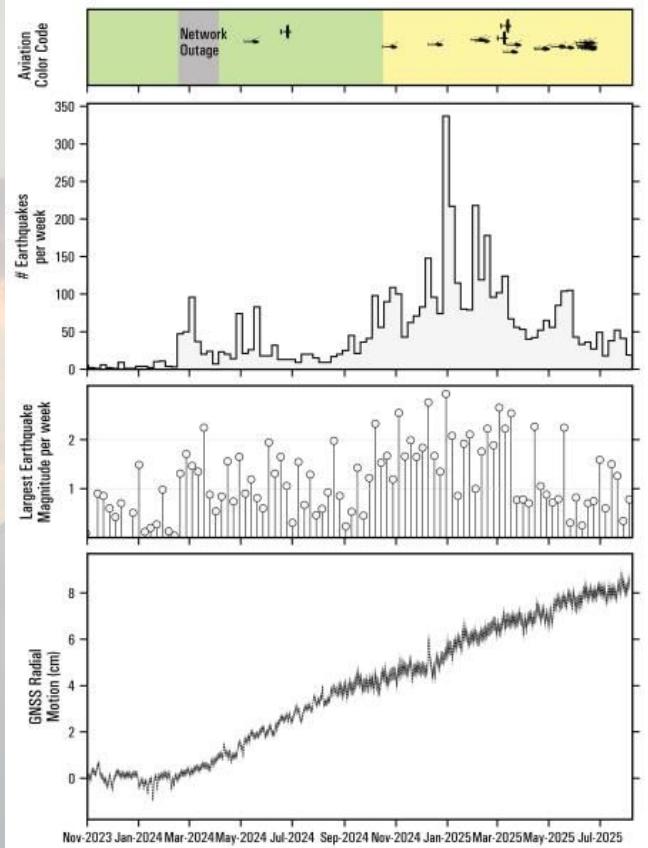
very high threat
high threat

Rank	Volcano	State	Aviation threat score	Overall threat score	Latitude (in decimal degrees)	Longitude (in decimal degrees)
1	Kilauea	HI	48	263	19.425	-155.292
2	Mount St. Helens	WA	59	235	46.2	-122.18
3	Mount Rainier	WA	37	203	46.87	-121.758
→ 4	Redoubt Volcano	AK	48	201	60.485	-152.742
5	Mount Shasta	CA	39	178	41.42	-122.2
6	Mount Hood	OR	30	178	45.374	-121.694
7	Three Sisters	OR	30	165	44.133	-121.767
8	Akutan Island	AK	47	161	54.134	-165.986
9	Makushin Volcano	AK	47	161	53.891	-166.923
→ 10	Mount Spurr	AK	48	160	61.299	-152.251
11	Lassen volcanic center	CA	32	153	40.492	-121.508
→ 12	Augustine Volcano	AK	48	151	59.363	-153.43
13	Newberry Volcano	OR	30	146	43.722	-121.229
14	Mount Baker	WA	15	139	48.777	-121.813
15	Glacier Peak	WA	37	135	48.112	-121.113
16	Mauna Loa	HI	4	131	19.475	-155.608
17	Crater Lake	OR	37	129	42.93	-122.12
18	Long Valley Caldera	CA	29	129	37.7	-118.87
19	Mount Okmok	AK	47	117	53.43	-168.13
→ 20	Iliamna Volcano	AK	34	115	60.032	-153.09
21	Yellowstone caldera	WY	27	115	44.43	-110.67
22	Aniakchak Crater	AK	41	112	56.88	-158.17
23	Hualalai	HI	27	109	19.692	-155.87
24	Mono-Inyo Craters	CA	29	106	37.88	-119
25	Mount Martin	AK	23	106	58.172	-155.361
26	Mount Mageik	AK	23	106	58.195	-155.253
27	Trident Volcano	AK	29	106	58.236	-155.1
28	Mount Katmai	AK	35	106	58.28	-154.963
29	Mount Veniaminof	AK	47	102	56.17	-159.38
30	Atka volcanic complex	AK	35	102	52.381	-174.154
31	Korovin Volcano	AK	35	102	52.381	-174.166
32	Shishaldin Volcano	AK	41	93	54.756	-163.97
33	Clear Lake volcanic field	CA	15	92	38.97	-122.77
34	Mount Adams	WA	15	92	46.206	-121.49
→ 35	Hayes Volcano	AK	34	90	61.64	-152.411

Mount Spurr: 2025 Unrest



Eruption at Alaska's Mount Spurr is likely, and scientists say preparations should begin

SHARE & SAVE - f X e ...


U.S. NEWS

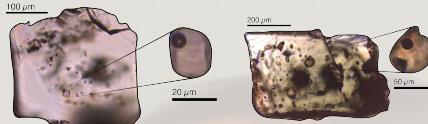
Eruption at Alaska's Mount Spurr is likely, and scientists say preparations should begin

The Alaska Volcano Observatory said now is a good time for Alaskans to "familiarize themselves with the possible hazards of a Spurr eruption."

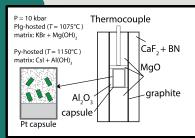
FC: USGS AVO

FC: J. Lubbers / USGS AVO

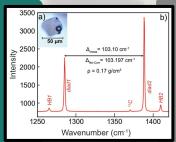
AVO Community Experiment Solicitation


Mount Spurr melt inclusion community experiment

Mount Spurr, Alaska, is a very high threat volcano located 80 km from Anchorage, Alaska's largest city and a global air cargo hub. The volcano showed signs of new magma intruding early in 2024 and its alert level was elevated starting in October 2024. In February 2025, gas emissions markedly increased and AVO became increasingly concerned that activity was leading to an eruption. Since then, activity has somewhat decreased but remains elevated.


There are critical petrologic knowledge gaps on the Spurr magmatic system which AVO would like to fill in order to better interpret current unrest and gas emission data. We seek volunteer help from the volcanology/petrology community to help fill these gaps. Specifically, we seek a complete characterization of the volatile budget from melt inclusions (e.g., H₂O, CO₂, S, Cl). We are asking for volunteer labs to help prepare a modest number of melt inclusions from the last eruption of Mount Spurr (1992) to expedite this typically time-consuming task through collaborative group effort. If you want to help:

Community Response Timeline: Mount Spurr Case Study



Plg- & Pyx-hosted MIs
prepped by participating
labs (MSU, UF, CVO)

Subset of MIs
homogenized at UF

Subset of MI VBs
measured by Raman
at UCB

Measure homogenized
MI glass by
SIMS at ASU

Refine Sulfur_X
modeling

Aug. 2025

Jun. 2025

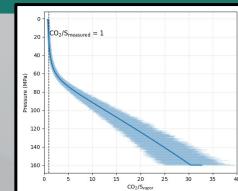
Aug-Oct. 2025

Aug. 2025

Jan. 2026

Nov. 2025

Mar. 2026


Feb. 2026

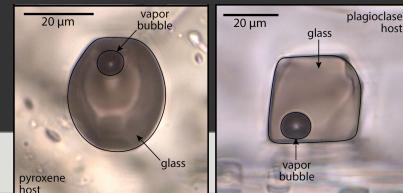
Sample splits
distributed by AVO

Initial estimates of MI
glass volatiles & major
elements by FTIR and
EPMA at USGS-CVO

Preliminary Sulfur_X
modeling to estimate
entrapment pressure &
degassing pathways

Measure homogenized
MI glass by
EPMA at UAF-GI

Some Preliminary Findings


- Collected an MI dataset (including CO_2) for Mount Spurr, a very high threat Cook Inlet volcano, via a community effort using readily available resources.
- Trapped melts are compositionally variable (andesite-dacite) with moderate H_2O (up to ~2.7 wt.%) and S (up to ~0.1 wt.%), high Cl (up to ~1 wt.%); vapor bubble CO_2 up to 1200 ppm.
- Entrapment pressure estimates of 250-260 MPa (~9.5-9.8 km below surface).
- Summit CO_2 /S molar ratio (~1) from recent unrest corresponds to shallow degassing of Spurr magmas at ~30-60 MPa (~1.1-2.3 km below surface).

Visit our poster on Tuesday, Dec. 16 from 8:30 am -12 pm*!

* Attending Norman L. Bowen Award Lecture from 8:30-10 am so actually come by between 10-12 pm!

Categories Emerging from Data Compilation:

	MI Data?	Reconstructed CO ₂ ?	Gas Data?	Example(s)	Next Step
Group 1	✓	✓	✓	Okmok 2008 Veniaminof 2018	Time to model! Explore potential forward model degassing pathways based on different scenarios (e.g., shallow degassing, recharge).
Group 2	✓	✗	✓	Augustine 2006 Pavlof 2016 (IP) Spurr 1992	Reconstruct CO ₂ from MIs
Group 3	✗	✗	✓	Shishaldin 2023 Cook Inlets!	Analyze MIs
Group 4	✓	✓ or ✗	✗	???	Deploy multi-GAS during unrest
Group 5	✗	✗	✗	Douglass (some gas, no holocene eruptions)	Analyze MIs from any available material, and deploy multi-GAS during unrest?

What's Next?

How can we make the MI data collection process more efficient in a community response scenario?

How do we prioritize systems to focus on as a community?

Join our Slack workspace!

→ New workshop attendees: we would love to hear your ideas and perspectives!